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Abstract: If heavy partners of the Standard Model matter fields are discovered at the

LHC it will be imperative to determine their spin in order to uncover the underlying theory.

In decay chains, both the spin and the mass hierarchy of all particles involved can influence

the resulting angular correlations. We present the necessary conditions for decays involving

the matter partners to exhibit angular correlations. In particular we find that when the

masses are not degenerate, a heavy fermionic sector always displays angular correlations in

cascade decays. When the masses are closely degenerate the size of spin effects is controlled

by a global phase parameter. In a large region of the parameter space, correlations are

strongly suppressed. In other regions, such as in UED model where this phase is fixed

by 5-d Lorentz invariance, the correlations are pronounced. In addition, we show that in

certain cases one may even have enough information to determine the spin of other heavy

partners involved in the decay (such as the Lightest Stable Partner or a heavy gluon).
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1. Introduction

Stabilizing the hierarchy between the electroweak (EW) scale and the Planck scale generi-

cally requires the existence of new particles at the TeV scale. Typically, such new particles

organize themselves into partners of the Standard Model (SM) particles, i.e. they have the

same gauge quantum numbers. However, the spin of such partners is more model depen-

dent. There exist models where the partners’ spin is opposite to that of the SM particles

(the prime example is of course Supersymmetry). There are also several other models

where the partners’ spin is the same as that of the SM particles (e.g. UED [1, 2] or Little

Higgs models [3 – 9])

Recently, numerous papers began to address the issue of direct spin determination

at the LHC. The comparison was usually made between Supersymmetry (SUSY) and the

Universal Extra-dimensions (UED) scenario [10 – 16]. In this paper we would like to point

out general features of any such comparison which go beyond the particular model of UED

(see also [17 – 19]).

We begin by analyzing the case of fermionic partners of SM matter fields (i.e. quarks

and leptons) with a general mass spectrum and model independent couplings. As we

emphasized in a previous publication [18] the chirality of the couplings is a crucial ingredient

in any attempt at spin determination. We give a complete description of the necessary
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Figure 1: The topology for a generic decay where spin information may be found. A heavy particle

X decays into a SM fermion f̄ and a heavy partner F which subsequently decays into another SM

fermion f and an invisible particle Y . The angular correlations between f and f̄ may reveal the

spin identity of the intermediate particle F .

conditions for chiral couplings of the new matter sector. These conditions depend strongly

on the spectrum. We identify the relevant parameters to be the relative size of the splitting

between the Dirac masses ∆M and the Yukawa mass ∼ λv. In the case where there is a

large splitting between the partners of the left and right handed SM fields, the interactions

are dominantly chiral.

However, when the matter partners’ spectrum is closely degenerate, the situation is

more subtle. The chirality of the coupling is controlled by a phase parameter in the

fermionic mass matrix. It interpolates between a limit where the chiral coupling is sup-

pressed and one where the chiral coupling is enhanced. For the UED model this phase

is fixed by 5-d Lorentz invariance and leads to an enhanced chiral structure. However, in

principle the situation could be very different for a general model of fermionic partners

of the matter sector (e.g. Little Higgs). We examine the consequences of a general phase

structure on the prospects of spin determination.

In light of these observations it becomes clear that rather than treating UED as a

universal benchmark, studies of spin correlations should extend to models with more gen-

eral fermionic couplings. Due to the close connection between chirality and 5-d Lorentz

invariance, this also means that experimental observation of degenerate fermion partners

with chiral couplings provides a unique test of models based on extra dimensions.

In addition, we investigate the possibility of extracting further information from a

decay involving the matter partners. We will consider event topologies as shown in figure 1

where F is the matter partner. If F is a scalar, Lorentz invariance constrains X and Y to

be fermions. Since there is no correlation between the outgoing f − f̄ to begin with, one

cannot hope to extract any more information. In contrast, when F is a fermion, X and Y

can be either a scalar or a vector-boson. We discuss the dependence of the f − f̄ angular

correlation on the spin of X and Y and show that, with sufficient information regarding

the mass spectrum, one can unambiguously determine the spin of X and Y .

– 2 –



J
H
E
P
0
5
(
2
0
0
7
)
0
5
2

SM Heavy partners SU(2) × UY (1)
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The paper is organized as follows: In section 2 we lay down the necessary conditions

for having chiral vertices in the heavy matter sector with fermionic partners of the SM and

in section 3 we discuss the resulting angular correlations in cascade decays involving the

SM matter partners. In section 4 we focus on additional information that can be extracted

out of such cascade decays. Section 5 contains a brief discussion of some experimental

difficulties such measurements must confront. In section 6 we present our conclusions.

2. Chirality conditions

In this section we discuss the conditions needed for a heavy fermionic sector to have chiral

couplings with the SM fields. We will assume that this new sector has the same quantum

numbers as the known quarks and leptons. In addition, we will assume that some Z2

parity symmetry is present (e.g. KK-parity in the UED model or T -parity in Little Higgs

models). We will use the quark sector to demonstrate our results, but it should be clear

that identical conclusions apply to the lepton sector as well.

We denote the heavy fermionic modes by Q′
L,R, U ′

L,R and D′
L,R (for simplicity we are

considering only one generation). Here, Q′ = (u′, d′) is an SU(2) doublet while U ′ and D′

are singlets; note that Q′
L,U ′

R and D′
R are partners to SM fermions while Q′

R,U ′
L and D′

L

have no low energy counterparts.

Due to the Z2 parity, the heavy fermions can only couple to the SM via heavy bosons

(g′, Z ′ and etc.). The chiral nature of the SM restricts the form of the interactions. For

example, the couplings to the heavy gluon g′ is

Lint = Q
′
L/g

′qL + U
′
R/g

′uR + D
′
R/g

′dR + h.c. (2.1)

where qL is the SM electroweak doublet and uR and dR are the singlets.

For the new fermions to be parametrically heavy they must have Dirac masses of the

form MQQ
′
LQ′

R.1 Therefore, after EWSB their mass matrix is given by,

Lmass,up =
(

u′
L U ′

L

)

(

MQ λv

λv MU eiϕ

)(

u′
R

U ′
R

)

. (2.2)

where v = 246 GeV, λ is a Yukawa coupling which in general is different than the cor-

responding coupling in the SM, and ϕ is some phase which cannot be rotated away. A

similar mass matrix holds for the down sector.

1In principle one can crank up the mass by increasing the Yukawa coupling. However, such large Yukawa

couplings are limited by perturbativity and severely constrained by measurements of the S parameter.
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The diagonalization of this matrix is trivial, but it carries important consequences to

the prospects of spin measurements. The mass eigenstates are a mixture of u′ and U ′ given

by,






U ′
1 (L,R)

U ′
2 (L,R)






=







cos θ eiϕ′

sin θ

−e−iϕ′

sin θ cos θ













u′
(L,R)

U ′
(L,R)






(2.3)

The phase ϕ′ is given by,

ϕ′ = tan−1

(

MU sin ϕ

MQ + MU cos ϕ

)

(2.4)

and the mixing angle is determined by the ratio,

tan θ =
2λv

√

M2
Q + 2MQMU cos ϕ + M2

U

(

M2
Q − M2

U

)

+

√

(

M2
Q − M2

U

)2
+ 4λ2v2

(

M2
Q + 2MQMU cos ϕ + M2

U

)

(2.5)

We will be mostly interested in the two extreme cases where ϕ = 0 or ϕ = π since the

general case is a simple interpolation in between. In these limiting cases the expression for

tan θ simplifies and it is easy to see the conditions for large or small mixing.

2.1 Non-degenerate spectrum

For a non-degenerate spectrum MQ −MU ≫ λv, the mixing is always small and the phase

plays no role,

tan θ ∼ λv

∆M
≪ 1 (2.6)

where ∆M = MQ−MU . When the mixing is small the interactions with the SM in eq. (2.1)

are still chiral after rotation into the mass eigenstate basis. This simple observation leads to

an important conclusion: any model with heavy fermionic partners of the SM matter sector

protected by some Z2 parity (KK-parity, T -parity etc.), with a non-degenerate spectrum,

exhibits angular correlations in decays.

2.2 Degenerate spectrum

We now turn to examine a degenerate spectrum, so that MQ−MU ≪ λv. Such a spectrum

can result from any symmetry that relates left and right mass parameters. In this case the

phase ϕ is important. When ϕ = 0 the mixing is large,

tan θ =
λv

∆M +
√

∆M2 + λ2v2
→ 1 − ∆M

λv
(2.7)

The coupling of the mass eigenstates to the SM is no longer chiral,

Lint = U
′
1/g

′u + U
′
2γ5/g

′u + O
(

∆M

λv

)

+ h.c. (2.8)

and similarly for the other gauge couplings. The mass splitting between the two eigenstates

is ∼ 2λv. If λv is larger than the width of U ′
1,2 then in the narrow-width approximation

– 4 –



J
H
E
P
0
5
(
2
0
0
7
)
0
5
2

(NWA) there is no interference between diagrams involving U ′
1 and those involving U ′

2.

Therefore, since the interactions in eq. (2.8) are not chiral we expect to see no angular

correlations in decays (up to corrections of order O(∆M/λv)).

In the UED model, not only are the masses degenerate by construction, but also the

phase is fixed by 5-d Lorentz invariance ϕ = π as we show in appendix A. In this sense,

UED is only a very special model of fermionic partners. In this case, unless λ is unnaturally

large, the mixing is always small,

tan θ =
λv

M +

√

M
2
+ v2λ2

→ λv

2M
≪ 1 (2.9)

where M = (MQ +MU )/2. Therefore, as can be seen from eq. (2.1), the interactions of the

SM with U ′
1 and U ′

2 remain chiral. This will lead to definite angular correlations in cascade

decays.

The general case for an arbitrary phase is a simple interpolation between these two

extreme examples and we comment on it briefly below.

3. Angular correlations in heavy vector-boson decay

In this section we illustrate the effect of the mixing between the mass eigenstates on angular

correlations in cascade decays. We consider the decay of a heavy gauge partner into SM

fermions and an invisible particle. In SUSY, the decay of a gluino into a f -f̄ pair2 through

an on-shell sfermion for example, contains no correlation between the outgoing f -f̄ pair

because of the scalar nature of the intermediate sfermion. However, in any scenario with

partners of the same-spin as the SM particles a correlation between the f -f̄ pair may exist.

The existence of such correlations requires the interactions to be chiral [18]. As we saw in

the previous section the chirality of the interactions depends on the mixing between the

heavy matter partners.

We begin by considering the amplitude for a gluon partner decay in same-spin scenar-

ios, given by

M = M1 + M2 = +

γ ′, Z ′

f̄
f

g′ F ′
1, F

′
2

γ ′, Z ′

f
f̄

g′ F̄ ′
1, F̄

′
2

The intermediate partner can be either of the mass eigenstates, F ′
1 or F ′

2.

If the intermediate particles are on-shell then the decay width associated with this

process can be written in the form

dΓ

dtff̄

∝ α + β tff̄ (3.1)

2In this section and the next we use f to denote any of the SM fermions such as the quarks or leptons.

We denote by the letters Q and U quantities related to the SU(2) doublet and singlet fields respectively.
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where tff̄ = (pf + pf̄ )2 is the invariant mass of the fermion pair.3 To emphasize the

physically relevant effects we will only display the spectrum-dependent part of α and β.

As usual, the invariant mass has a kinematical edge at,

t
(edge)

ff̄
=

(

M2
g′ − M2

int

)(

M2
int − M2

γ′

)

M2
Q

(3.2)

where Mint is the mass of the intermediate particle. Whether the edge is actually visible

or not depends on the slope.

In the case of SUSY partners, the slope always vanishes, βSUSY = 0, and no angular

correlations are present. Therefore to determine that the intermediate particle is not a

scalar, it is sufficient to determine that β 6= 0.4 The size of the slope β depends on the

chirality of the interactions.

3.1 Non-degenerate spectrum ∆M ≫ λv

When the splitting in the diagonal elements of the mass matrix in eq. (2.2) is large, the

mixing between the two mass eigenstates is minimal as illustrated in eq. (2.6). In this case,

the interactions with the SM are almost purely chiral. Using the same parametrization as

in eq. (3.1) and working to leading order in λv
∆M

we find

αF ′

1
= (M4

Q + 4M2
γ′M2

g′) t
(edge)

ff̄

βF ′

1
= (2M2

g′ − M2
Q)(M2

Q − 2M2
γ′) (3.3)

Similar expressions hold for αF ′

2
and βF ′

2
with the replacement MQ → MU . Here, F ′

1 and

F ′
2 represent the two mass eigenstates forming the fermionic partners of the SM fermion f .

There is no parametric suppression of the slope as the coefficient of tff̄ is of the

same order as the constant term. However, a kinematical suppression is still present and

when M2
Q/M2

γ′ = 2 the slope vanishes. The origin of this suppression is simple: when

M2
Q/M2

γ′ = 2, the vector-boson γ′ is an equal mixture of the transverse and longitudinal

components and spin conservation does not choose any preferred alignment for the outgoing

f − f̄ pair. The sign of the slope can therefore provide additional kinematical information.

As we shall see in the next section, it may, in fact, help determine the spin of g′ and γ′ as

well.

To conclude, in the absence of any kinematical suppression such as M2
Q/M2

γ′ ∼ 2,

angular correlations are very pronounced and a histogram of the events should readily

discover the linear dependence of dΓ/dtff̄ on tff̄ .

3.2 Nearly degenerate spectrum, ∆M ≪ λv

If the splitting between the diagonal elements of the mass matrix is very small ∆M ≪ λv

the phase difference ϕ between the diagonal elements is important. While the expression

3In the rest frame of the fermion-partner, tff̄ ∝ (1 − cos θ∗) where θ∗ is the angle between the f − f̄

pair in that frame.
4In general, for an intermediate particle of spin s, the differential decay width is a polynomial in tff̄ of

degree 2s.
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Figure 2: A plot of 1

Γ

dΓ

dtff̄
as a function of tff̄ for the reaction shown in eq. (3.1). The same-spin

scenario (solid-black) is contrasted with a supersymmetric scenario (dashed-red). The mass ratios

are Mg′/MF = 2 and MF /Mγ′ = 5. The only feature to note is simply the linear dependence of

the same-spin scenario given by eq. (3.3)

for the amplitude can be easily computed for a general phase, it is more illuminating to

consider the two extreme cases ϕ = 0 and ϕ = π.

When ϕ = 0, mixing is maximal as we saw in the previous section. The interaction of

F ′
1 with the SM is almost purely vector-like and that of F ′

2 is almost purely axial as seen

from eq. (2.8).

The mass splitting between the two states F ′
1 and F ′

2 is approximately 2λv. If the

splitting is larger than the decay width of F ′
1 and F ′

2 then the interference between the two

diagrams in eq. (2.8) can be neglected and the NWA is justified.5 Using the NWA we find

(to leading order in ∆M/λv),

α =
1

2

(

2M2
g′ + M

2
)(

M
2
+ 2M2

γ′

)

t
(edge)

ff̄

β =
(

2M2
g′ − M

2
) (

M
2 − 2M2

γ′

)

(

∆M

λv

)2

. (3.4)

This expression is very similar to the one we found in the previous case only that the

coefficient of tff̄ is subdominant to the constant piece and comes only at second order in

the small parameter ∆M/λv. Angular correlations are therefore suppressed and vanish

altogether in the degenerate limit. The reason for this is simple: both interaction vertices

in eq. (3.1) must be at least partially chiral to have any angular correlations [18].

A very rough lower bound on the number of events needed to determine that a non-zero

slope is statistically significant is simply,

N &
1

(∆M/λv)4
(3.5)

5If the NWA is not valid, one must take the interference into account. In this case the coefficients α and

β are given by similar expressions to eq. (3.3).
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Even when the suppression is only moderate, ∆M/λv ∼ 1/10, the number of events re-

quired becomes exceedingly large.

On the other hand, when ϕ = π as in UED, the mixing is minimal and the amplitude

is the same as in the non-degenerate case, eq. (3.3). Therefore, UED predicts that angular

correlations are present between the f − f̄ pair.

In an interesting recent paper, the authors of [16] claim that failure to observe an-

gular correlations between the f − f̄ pair establishes the existence of the gluino (albeit

indirectly). The above discussion shows that this need not be the case. If the spec-

trum is non-degenerate, the correlations may simply be kinematically suppressed (when

M2
Q ∼ 2M2

γ′,Z′). This possibility may be ruled-out by a proper measurement of the spec-

trum. If the spectrum is nearly degenerate, the phase ϕ plays an important role. In this

case, the mixing between the mass eigenstates, given by eq. (2.5), is approximately,

tan θ =
λv cos (ϕ/2)

∆M +
√

∆M2 + (λv)2 cos2(ϕ/2)
→ 1 +

∆M

λv cos(ϕ/2)
(3.6)

which is large in general. Only when ϕ → π does this expansion break down and mix-

ing is diminished. Therefore, as we saw above, we expect the angular correlations to be

suppressed by ∆M/λv cos(ϕ/2). Failing to observe angular correlation is therefore not

necessarily an indication that the underlying model is SUSY. However, it is sufficient to

rule-out the UED model which predicts ϕ = π.

3.3 Dilepton correlations and the Z ′ vertex

In the discussion above we examined the angular correlations between the SM fermions f−
f̄ . Undoubtedly, the measurement of such correlations in the leptonic sector is considerably

less challenging than the quark sector. One possible decay involving leptons is Z ′ →
ℓ+ ℓ− γ′ through an intermediate heavy lepton. One may then question our initial choice

for the coupling of the partners to the SM fields, eq. (2.1). For example, a heavy Z ′ ∼ W ′
3

is likely to mix very little with a heavy γ′ and therefore its interactions with the matter

sector are strongly chiral to begin with. In this case, no amount of mixing between the

mass eigenstates can change the chiral structure of the interactions.

Nonetheless, the analysis above is still relevant since as we argued before, the chirality

of only one vertex is insufficient to guarantee spin effects in cascade decays. One must show

that the other vertices are at least partially chiral to ascertain the existence of angular

correlations.

One may also argue that the mixing between the lepton partners is always suppressed

since the Yukawa couplings are small. In this paper we make no attempt at any general

statements of this kind and only remark that in any model in which this is true, angular

correlations between the outgoing ℓ−ℓ+ pair are indeed present.

4. Determining the spin of g′ and Z ′/γ′

In cases where angular correlations are present, one can obtain more information than just

the spin of the intermediate particle. It may even be possible to determine the spin of all

the particles in a cascade decay.

– 8 –
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Scenario Slope β Intercept α

(

2M2
g′ − M2

Q

)(

M2
Q − 2M2

γ′

)

(M4
Q + 4M2

γ′M2
g′) t

(edge)

ff̄

−
(

M2
Q − 2M2

γ′

)

M2
Q t

(edge)

ff̄

(

2M2
g′ − M2

Q

)

M2
Q t

(edge)

ff̄

−1 t
(edge)

ff̄

Table 1: If angular correlations exist between the outgoing f − f̄ or dilepton pair, then the sign of

the slope of the distribution (whether β > 0 or β < 0) may reveal the spin of the external particles

as well as the intermediate one. In the first row we consider a scenario where the external particles

are both vector-bosons. In the second row the incoming partner is a scalar whereas the outgoing

partner is a vector-boson and so forth.

In table 1 we present the slope, βF ′

1
in eq. (3.1), for different spin choices for the external

particles g′ and γ′ (similar expressions hold for βF ′

2
). When the two external particles are

scalars the slope is unambiguously negative. In contrast, when the gluon partner g′ is

a vector-boson and γ′ is a scalar the slope is unambiguously positive. These are simple

consequences of spin conservation. However, when γ′ is a vector-boson, the sign of the

slope depends on whether γ′ is longitudinally dominated (M2
Q > 2M2

γ′) or transversally

dominated (M2
Q < 2M2

γ′).

Knowledge of the slope together with a measurement of the ratio MQ/Mγ′ (possibly

from kinematical edges) can determine the spin of the external particle up to a two fold

ambiguity. For example, if we measure a positive slope and M2
Q/M2

γ′ > 2 we can conclude

that the gluon partner is a vector-boson, but we do not know whether γ′ is a scalar or a

vector-boson. On the other hand, if the slope is positive and M2
Q/M2

γ′ > 2 we would have

concluded that γ′ is a scalar, but we would have an ambiguity left regarding the spin of

the gluon partner.

Long cascade decays such as the one presented in figure 3 may contain enough infor-

mation to determine the spin of all the partners unambiguously. For example, suppose we

measure the slope of the f − f̄ pair to be negative with M2
F ′/M2

Z′ < 2 and that of the

dilepton pair, ℓ− − ℓ+, to be negative with M2
L′/M2

γ′ < 2 as well. Then, either all three

partners, g′, Z ′ and γ′, are vector-bosons, or all three are scalars. Hence, with a single

spin measurement of the Z ′, such as described in [10 – 13, 18], we can lift this two-fold

ambiguity and determine the spin of all the particles in the event.

There are of course other discrepancies between the different scenarios which can, in

principle, help remove the degeneracies. For example, in the limit where MF ′

1
≫ Mγ′ ,

the diagram with a vector-boson γ′ is longitudinally enhanced over the other possibilities.

– 9 –
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b
b̄

Figure 3: A possible long cascade decay in scenarios with same-spin partners. As explained in

the text, a knowledge of the angular correlations between the b − b̄ pair and dilepton ℓ− − ℓ+ may

contain enough information to determine the spin of all the particles in the event, including g′, Z ′

and γ′.

However, these are numerical differences that do not affect the overall shape and may be

hard to measure in practice when cross-sections and branching ratios cannot be determined

very accurately. We have tried to emphasize some robust features of the distributions which

do not relay on very accurate determination of the shape.

5. Experimental challenges and strategy

The most daunting experimental difficulty for spin determination (and new physics in

general) is SM background. We do not have much to say about it over what has already

been discussed in the literature. Events with several final state leptons, hard jets and large

missing energy are very rare in the SM and may prove to be strong signals of new physics.

In what follows we will assume that some non-zero set of such events has been isolated and

that the SM background is under control.

Once such a set is established one may begin to search for events where dilepton or

b − b̄ final states are present. At this stage it will be important to try and construct the

event topology and identify a set of events with topologies such as discussed above. One

may then look for angular correlations between dilepton or b − b̄ pairs. However, there

may be some ambiguity in the pairing (e.g. more then two leptons in an event or two

leptons coming from different branches) which will result in a reduction of the signal due

to combinatorics. As we showed in [18], this is not necessarily a disaster and may simply

require more statistics to overcome the irreducible background.

An additional experimental aspect which may affect the signal is the collection of

various cuts imposed on the outgoing particles. In particular pT and ∆R cuts will affect

any invariant mass distribution such as the one described above. To investigate this point

further we used the event generator HERWIG [20, 21] which we modified to include theories

with same-spin partners [18]. In figure 4 we plot a histogram of the decay distribution as

a function of tff̄ for several experimental cuts. The comparison is made between SUSY
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Figure 4: Plots of the decay distribution vs. tff̄ = (pf +pf̄)2 for several experimental cuts. In the

upper pane we present the Monte-Carlo results with no cuts. In the lower left pane a pT > 100 GeV

cut was applied to both outgoing fermions together with ∆R > 0.3 isolation cut. In the lower right

pane the isolation cut was increased to ∆R > 0.7. The mass parameters are such that Mg′/MF = 2

and MF /Mγ′ = 5. The deterioration of the signal due to the cuts is visible at the lower end of the

distribution.

and a general same-spin scenario. We require pT > 100 GeV on both outgoing fermions.

We also apply different isolation cuts, ∆R > 0.3 and ∆R > 0.7, between the two fermions.

While these cuts do not dramatically affect the distribution they do modify its lower end.

These results are presented here with the intent to illustrate the possible reshaping of

such distributions due to experimental cuts. Clearly, many more experimental challenges

have to be overcome before such a measurement is dubbed realistic. We emphasize that it

is important to base such measurements on robust features of the distributions and not on

tiny shape differences sensitive to a variety of experimental factors which may not even be

sufficiently well-understood. Two such robust and important features to focus on are the

existence of a non-zero slope and its sign.
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6. Conclusions

If new particles are discovered at the LHC, it will be important to determine their spin. In

light of the proliferation of new models in the recent decade, it is evident that Supersym-

metry is not the only viable model for TeV scale physics. Many of the new models have,

in fact, partners to the SM particles with the same spin as their SM counterparts. In this

paper we investigated the general structure of such a sector and described the necessary

conditions for spin effects to be observable.

When the fermionic partners of the left and right handed matter fields (qL and uR

and dR) have well-separated masses, angular correlations are always present regardless of

the precise model (UED, Little Higgs and etc.). However, as the spectrum is squeezed and

becomes more degenerate the mixing between the states is sensitive to an arbitrary phase

in the mass matrix. In the UED model this phase is set by 5-d Lorentz invariance and the

mixing remains small. In more general models this need not be the case and mixing can

be very large. If such is the case, then spin information is washed out and consequently

becomes harder to observe.

An observation of a non-zero slope will reveal the matter partners to be fermions. The

sign of this slope may then be used to determine the spin of the external particles in the

decay (such as the heavy gluon partner or other heavy vector-bosons). In certain cases

it may even by possible to unambiguously infer the spin of all the particles involved in a

cascade.
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A. 3-site deconstruction of UED

In this appendix we present a simple 3-site toy model for a scenario with same-spin SM

partners. We illustrate the origin of the sign difference between the KK mass of the

doublet Q′ and that of the singlet U ′ (or D′) in the UED model. We show that it is simply

a consequence of the assumed 5-d Lorentz invariance of UED models. This serves to

show that unless some special symmetry is enforced there is, in general, a phase difference

between the masses, which is not necessarily ϕ = π as in UED. Therefore, as we argued in

the text, UED can be treated as a special limit of a generic 3-site model with same-spin

partners.

– 12 –



J
H
E
P
0
5
(
2
0
0
7
)
0
5
2

We begin by writing a simple lagrangian involving 3 pairs of SU(2) doublets,

{QiL(x), QiR(x)} with i = 1, 2, 3,

LQ = kinetic terms +
1

a

(

Q1R, Q2R, Q3R

)







0 1 −1

−1 0 1

1 −1 0













Q1L

Q2L

Q3L






+ h.c. (A.1)

This is simply a discrete version (with 3-sites) of an extra dimension compacted on a circle

with inter-site separation a. The kinetic terms include the coupling to an SU(2) gauge

group on every site.6

As it stands, this lagrangian has a Z3 symmetry which reshuffles all three fields. This

symmetry corresponds to the global S1 symmetry, which is the conservation of 5-d momen-

tum in the continuum limit. This Z3 is broken down to Z2 by orbifolding the geometry

and identifying the first and third sites. This is most easily seen by going to an eigenstate

basis of Z2 and rewriting the lagrangian as,

LQ = kinetic terms +
1

a

(

Q
(0)
R , Q

(cos)
R , Q

(sin)
R

)







0 0 0

0 0 −
√

3

0
√

3 0













Q
(0)
L

Q
(cos)
L

Q
(sin)
L






+ h.c. (A.2)

where we used the decomposition of the identity to write,







Q1L

Q2L

Q3L






=

1√
3







1

1

1






Q

(0)
L +

1√
6







1

−2

1






Q

(cos)
L +

1√
2







1

0

−1






Q

(sin)
L (A.3)

and similarly for the right-handed fermions. Q(0) is the zero mode and Q(cos) and Q(sin)

correspond to the first KK level. These modes are even (Q(0), Q(cos)) and odd ( Q(sin))

under the Z2 symmetry. Orbifolding the geometry we can project out the even (odd) states

by choosing Dirichlet (Neumann) boundary conditions,

Q1 = Q3 → Q(sin) = 0 Neumann b.c. (A.4)

Q2 = 0 Q3 = −Q1 → Q(0) = Q(cos) = 0 Dirichlet b.c. (A.5)

The SM contains a left handed doublet, but no right handed one so we should project

out the odd modes for QL and the even modes for QR. The resulting lagrangian is,

LQ = kinetic terms + mQ
(sin)
R Q

(cos)
L + h.c. (A.6)

where m =
√

3/a. Doing the same exercise with the singlet fields U or D, we would have

to choose the opposite boundary conditions. We see from eq. (A.2) that we would pick the

opposite sign for the singlets,

LU = kinetic terms − mU
(sin)
R U

(cos)
L + h.c. (A.7)

6We are ignoring the gauge sector for simplicity, although one must include hopping terms in that sector

as well.
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and similarly for the D. However, this sign depends on an arbitrary choice we made for

the relative sign between the kinetic terms and the mass terms. 5-d Lorentz invariance

fixes this sign to be the same for the doublets and singlets. This choice is the reason for

the relative sign between the mass terms in eq. (A.6) and eq. (A.7). If no such symmetry

is present, the phase is arbitrary and we have,

LU = kinetic terms + eiφ mU
(sin)
R U

(cos)
L + h.c. (A.8)

Adding the contribution from the mixing with the Higgs mode we arrive at the mass matrix

quoted in the text,

Lkk−mass =
(

Q
(sin)
R , U

(cos)
R

)

(

m λv

λv eiφm

)(

Q
(cos)
L

U
(sin)
L

)

(A.9)
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